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Verrouillage multi-granularité dans les graphes orientés
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Connected Data - Graphs
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•Vertices contain data objects


•Edges represent the relationships between 
data objects


•Traversals based on these relationships help 
answer queries



Thread synchronisation techniques
• Special underlying data-structures:


• Lock-free trees, graphs


• Conflict free datatypes i.e. CRDTs
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• Special operation implementations:


• Compare and Swap


• Memory barriers and Operation reordering

• Primitives


• Semaphores


• Mutexes


• Read/write locks



Locking in Oriented Graphs - Terminology
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• Lock Target - Vertex which is locked


• Grain - Set of vertices guarded by this lock


• Granularity - Size of this grain



Lock granularities
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Fine Grained Locking Coarse Grained LockingMulti-granularity Locking

Concurrency Locking EfficiencyIntention locks

DomLock

CALock
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MGL with DomLock
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• Post-order traverse the graph


• Assign integer intervals to vertices in traversal order


• Use intervals to identify the lock grain and lock target
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WriteLock(G,H) = WriteLock([3,3], [3,4]) = WriteLock([3,4])
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MGL with DomLock
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• Lock target identification requires traversals


• False subsumptions might happen


• Intervals are not elastic
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Problems with MGL state of the art
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• Placing intention locks requires traversals


• Lock target identification requires traversals


• False subsumptions might happen


• Maintaining intervals is expensive



Constraints
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• Lock Target - Each thread holds one lock at any given time


• Graph has a single root



MGL using Common Ancestors - CALock
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Lv = {v} ∪ { ⋂
u∈parents(v)

Lu}

•Instead of using intervals to label vertices, CALock uses sets. 


•The label set for any vertex is given by the relation:



Working example of CALock Labelling
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Lv = {v} ∪ { ⋂
u∈parents(v)

Lu}
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Locking with CALock
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•To lock  the Lock target is the deepest 
vertex in 

u, v,
Lu ∩ Lv

•Lock (F, G)


•  = {A,C}


•Deepest node is C


•Place lock on C, which is the LSCA of F and G

LF ∩ LG



A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D} {A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

Lock Grains with CALock
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•The lock grain of a lock target  contains any vertex 
with  in its label.

u
u

•Grain of C = {C, F, G, H, I, J}



Concurrent Lock Pool
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•Lock requests issued by threads are added to a pool


•The pool is a list of size N = number of threads


•A lock request in the pool contains:


•A sequence number


•Lock type


•Lock target


•Lock target label



Concurrent Lock Pool - Conflict detection
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G, r, 2, {A,C,G} C, w, 3, {A,C} NULL NULL B, r, 1, {A,B}

•T1 holds a lock on G, blocking I and J


•T5 holds a lock on B, blocking D and E


•T2 has requested a lock on C and checks for conflicts


•Threads conflict if these conditions hold simultaneously


•Read/Write conflict


•Lock grain overlap


•Higher sequence number

T1 T2 T5



Concurrent Lock Pool - Conflict detection
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•Read/Write conflict: 


•T2 has w and T1 has r => true


•Lock grain overlap: 


•T2 is locking C which contains G that is already 
locked


•Higher sequence number


•T2 requested the lock after T1

T1 T2 T5

T2 is blocked and waits for T1 to release the lock
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Relabelling with CALock
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•Invoke the labelling relation recursively on the the 
affected vertex.

Lv = {v} ∪ { ⋂
u∈parents(v)

Lu}

•To add an edge between H and I, we take a lock 
on C and then start the relabelling at I.


•New label of I is:

({A, C, H} ∩ {A, C, G} ∩ {A, C, G, J}) ∪ {I} = {A, C, I}



Performance - STMBench7
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•What is the throughput of CALock compared other 
lock strategies


•How long does a thread spend waiting for a lock


•What is the cost of maintaining metadata for 
CALock and DomLock


•What is the relative sizes of lock grains between 
DomLock and CALock



Throughput of locking strategies

19

R:60% W:39.6% M:0.4%
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Response time for locks with CALock vs DomLock

20

R:60% W:39.6% M:0.4%

R:60% W:40%

R:90% W:9.9% M:0.1%

R:90% W:10%

R:10% W:89.1% M: 0.9%

R:10% W:90%



Cost of maintaining labels
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Grain sizes with Domlock and CALock
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Size of labels in memory with Domlock and CALock

23



Outlook
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•Allowing threads to hold multiple locks


•Allowing lock grains to be resized


•Eliminating the constraint that the graph is rooted



Merci ! 

Questions?
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