
Ayush Pandey, Swan Dubois, Marc Shapiro, Julien Sopena

CALock
Verrouillage multi-granularité dans les graphes orientés

1

ComPAS 4-7 Juillet 2023

Connected Data - Graphs

2

•Vertices contain data objects

•Edges represent the relationships between
data objects

•Traversals based on these relationships help
answer queries

Thread synchronisation techniques
• Special underlying data-structures:

• Lock-free trees, graphs

• Conflict free datatypes i.e. CRDTs

3

• Special operation implementations:

• Compare and Swap

• Memory barriers and Operation reordering

• Primitives

• Semaphores

• Mutexes

• Read/write locks

Locking in Oriented Graphs - Terminology

4

A

B C

D E

H I

F G

J

• Lock Target - Vertex which is locked

• Grain - Set of vertices guarded by this lock

• Granularity - Size of this grain

Lock granularities

5

Fine Grained Locking Coarse Grained LockingMulti-granularity Locking

Concurrency Locking EfficiencyIntention locks

DomLock

CALock

A

B C

D E

H I

F G

J

[1,4]

[1,2]
 [1,4]

[1,1]

[2,2]
 [3,3]

[3,4]

[3,3]

[4,4]

[4,4]

MGL with DomLock

6

• Post-order traverse the graph

• Assign integer intervals to vertices in traversal order

• Use intervals to identify the lock grain and lock target

A

B C

D E

H I

F G

J

[1,4]

[1,2]
 [1,4]

[1,1]

[2,2]
 [3,3]

[3,4]

[3,3]

[4,4]

[4,4]

WriteLock(G,H) = WriteLock([3,3], [3,4]) = WriteLock([3,4])

A

B C

D E

H I

F G

J

[1,4]

[1,2]
 [1,4]

[1,1]

[2,2]
 [3,3]

[3,4]

[3,3]

[4,4]

[4,4]

MGL with DomLock

7

• Lock target identification requires traversals

• False subsumptions might happen

• Intervals are not elastic

A

B C

D E

H I

F G

J

[1,4]

[1,2]
 [1,4]

[1,1]

[2,2]
 [3,3]

[3,4]

[3,3]

[4,4]

[4,4]

A

B C

D E

H I

F G

J

[1,3]

[1,2]
 [1,3]

[1,1]

[2,2]
 [2,2]

[2,3]

[2,2]

[3,3]

[3,3]

Problems with MGL state of the art

8

• Placing intention locks requires traversals

• Lock target identification requires traversals

• False subsumptions might happen

• Maintaining intervals is expensive

Constraints

9

A

B C

D E

H I

F G

J

• Lock Target - Each thread holds one lock at any given time

• Graph has a single root

MGL using Common Ancestors - CALock

10

A

B C

D E

H I

F G

J

Lv = {v} ∪ { ⋂
u∈parents(v)

Lu}

•Instead of using intervals to label vertices, CALock uses sets.

•The label set for any vertex is given by the relation:

Working example of CALock Labelling

11

Lv = {v} ∪ { ⋂
u∈parents(v)

Lu}
A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D}

{A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D}

{A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D}

{A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

Locking with CALock

12

•To lock the Lock target is the deepest
vertex in

u, v,
Lu ∩ Lv

•Lock (F, G)

• = {A,C}

•Deepest node is C

•Place lock on C, which is the LSCA of F and G

LF ∩ LG

A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D} {A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

Lock Grains with CALock

13

•The lock grain of a lock target contains any vertex
with in its label.

u
u

•Grain of C = {C, F, G, H, I, J}

Concurrent Lock Pool

14

A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D} {A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

•Lock requests issued by threads are added to a pool

•The pool is a list of size N = number of threads

•A lock request in the pool contains:

•A sequence number

•Lock type

•Lock target

•Lock target label

Concurrent Lock Pool - Conflict detection

15

A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D} {A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

G, r, 2, {A,C,G} C, w, 3, {A,C} NULL NULL B, r, 1, {A,B}

•T1 holds a lock on G, blocking I and J

•T5 holds a lock on B, blocking D and E

•T2 has requested a lock on C and checks for conflicts

•Threads conflict if these conditions hold simultaneously

•Read/Write conflict

•Lock grain overlap

•Higher sequence number

T1 T2 T5

Concurrent Lock Pool - Conflict detection

16

A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D} {A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

G, r, 2, {A,C,G} C, w, 3, {A,C} NULL NULL B, r, 1, {A,B}

•Read/Write conflict:

•T2 has w and T1 has r => true

•Lock grain overlap:

•T2 is locking C which contains G that is already
locked

•Higher sequence number

•T2 requested the lock after T1

T1 T2 T5

T2 is blocked and waits for T1 to release the lock

{A,C,I}

A

B C

D E

H I

F G

J

{A}

{A,B} {A,C}

{A,D} {A,E} {A,C,F}

{A,C,G}

{A,C,H}

{A,C,G,J}

{A,C,G,I}

Relabelling with CALock

17

•Invoke the labelling relation recursively on the the
affected vertex.

Lv = {v} ∪ { ⋂
u∈parents(v)

Lu}

•To add an edge between H and I, we take a lock
on C and then start the relabelling at I.

•New label of I is:

({A, C, H} ∩ {A, C, G} ∩ {A, C, G, J}) ∪ {I} = {A, C, I}

Performance - STMBench7

18

•What is the throughput of CALock compared other
lock strategies

•How long does a thread spend waiting for a lock

•What is the cost of maintaining metadata for
CALock and DomLock

•What is the relative sizes of lock grains between
DomLock and CALock

Throughput of locking strategies

19

R:60% W:39.6% M:0.4%

R:60% W:40%

R:90% W:9.9% M:0.1%

R:90% W:10%

R:10% W:89.1% M: 0.9%

R:10% W:90%

Response time for locks with CALock vs DomLock

20

R:60% W:39.6% M:0.4%

R:60% W:40%

R:90% W:9.9% M:0.1%

R:90% W:10%

R:10% W:89.1% M: 0.9%

R:10% W:90%

Cost of maintaining labels

21

R:60% W:39.6% M:0.4%R:90% W:9.9% M:0.1% R:10% W:89.1% M: 0.9%

Grain sizes with Domlock and CALock

22

Size of labels in memory with Domlock and CALock

23

Outlook

24

•Allowing threads to hold multiple locks

•Allowing lock grains to be resized

•Eliminating the constraint that the graph is rooted

Merci !

Questions?

25

